Automne 2024

Série 6

Vous etes fortement encourages a essayer de resoudre (eventuellement a plusieurs) l'exercice (\star) et a rendre votre solution (eventuellement a plusieurs) avant le mercredi de la semaine suivante. Il faudra transmettre votre solution sur moodle, sous forme d'un fichier pdf unique (eventuellement tape en LaTeX) en suivant le lien a cet effet dans la semaine de la serie.

Calculs dans les anneaux

Exercice 1. Soit $(A, +, \cdot, 0_A, 1_A)$ un ensemble muni de structures additionelles :

- $(A, +, 0_A)$ est un groupe (pas necessairement commutatif).
- La loi de composition $\bullet \cdot \bullet : A \times A \mapsto A$ est associative (mais pas forcement commutative) et admet 1_A comme element neutre (a droite et a gauche).
- La loi $\bullet \cdot \bullet$ est distributive par rapport a + : pour tout $a, x, y \in A$, on a

$$a \cdot (x + y) = a \cdot x + a \cdot y, (x + y) \cdot a = x \cdot a + y \cdot a.$$

On va montrer que $(A, +, 0_A)$ est commutatif (et donc que $(A, +, \cdot, 0_A, 1_A)$ est un anneau.

On notera 0 et 1 pour 0_A et 1_A et on note -a pour l'inverse de a dans le groupe $(A, +, 0_A)$.

1. Montrer que 0_A est absorbant :

$$\forall x \in A, \ 0_A.x = x.0_A = 0_A.$$

- 2. Montrer que $(-1) \cdot x = -x$.
- 3. Soient $x, y \in A$. Calculer de deux manieres -(x+y) et en deduire que

$$(-x) + (-y) = (-y) + (-x)$$

et conclure que + est bien commutative.

Exercice 2 (Formule du binome). Soit (A, +, .) un anneau pas forcement commutatif, $x, y \in A$ et $n \ge 1$ un entier.

1. Montrer que si x et y COMMUTENT pour la multiplication de A (ie x.y = y.x) on a la formule du binome de Newton :

$$(x+y)^n = (x+y).....(x+y)$$
 n fois $= \sum_{k=0}^n C_n^k.x^k.y^{n-k}.$

On rappelle que pour $0 \le k \le n$, $C_n^k \ge 1$ est le nombre de sous-ensembles de cardinal k dans un ensemble de cardinal n et pour tout $m \in \mathbb{N}$ et $x \in A$ on note

$$m.x = x + \cdots + x$$
 (m fois).

2. On suppose que $A = \mathbb{Z}/p\mathbb{Z}$ pour p un nombre premier $(\mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p$ est alors un corps mais on ne l'utilisera pas). Montrer que

$$\forall x, y \in \mathbb{Z}/p\mathbb{Z}, \ (x+y)^p = x^p + y^p.$$

Pour la preuve on utilisera la formule des coefficients du binome obtenue par denombrement

$$C_p^k = \frac{p!}{k!(p-k)!}$$

avec

$$n! = n \cdot (n-1) \cdot \cdots \cdot 1, \ n \ge 1, \ 0! = 1.$$

pour montrer que

$$\forall \ 1 \leqslant k \leqslant p-1, \ p|C_p^k.$$

Exercice 3. Soient $(A, +_A, \cdot_A)$ et $(B, +_B, \cdot_B)$ deux anneaux commutatifs. On considere l'anneau produit

$$A \times B = \{(a, b), a \in A, b \in B\}$$

muni de l'addition et de la multiplication coordonee par coordonnee

$$(a,b) + (a',b') = (a + a', b + b'), (a,b), (a',b') = (a,a',b,b')$$

avec comme neutre et unite $0_{A\times B}=(0_A,0_B),\ 1_{A\times B}=(1_A,1_B).$

1. Montrer que si A et B ne sont pas des anneaux nuls alors $A \times B$ n'est pas un anneau integre (meme si A et B sont integres).

Anneau quotient dans un anneau commutatif

Soit $(A, +, \cdot)$ un anneau commutatif et $I \subset A$ un ideal. Soit $a \in A$, on rappelle que la classe de congruence de a modulo I est le sous-ensemble

$$a \pmod{I} := a + I = \{a + i, i \in I\} \subset A.$$

Soient $a, a' \in A$; si on a

$$a \pmod{I} = a' \pmod{I},$$

on dit que a est congru a a' modulo I et on note cette relation

$$a \equiv a' \pmod{I}$$
.

Exercice 4. On reprend les notations ci-dessus.

1. Montrer les equivalences

$$a \equiv a' \pmod{I} \iff a - a' \in I \iff a - a' \equiv 0_A \pmod{I}$$
.

2. Montrer que la relation de congruence modulo I, $a \equiv a' \pmod{I}$ est une relation d'equivalence sur A dont les classes d'equivalences sont precisement les classes de congruence $a \pmod{I}$ pour $a \in A$ et que $a \pmod{I}$ est l'unique classe d'equivalence de cette relation contenant a.

On rappelle que l'ensemble des classes de congruences modulo I est note

$$A/I := \{a \pmod{I} = a + I, \ a \in A\} \subset \mathscr{P}(A).$$

3. Que vaut A/I si I = A? si $I = \{0_A\}$?

On rappelle que A/I est muni d'une structure d'anneau commutatif $(A/I, +_I, \cdot_I, 0_I, 1_I)$ qu'on appelle anneau quotient de A par l'ideal I et dont les lois sont

$$a \pmod{I} +_I b \pmod{I} = a + b \pmod{I}$$

$$a \pmod{I} \cdot_I b \pmod{I} = a \cdot b \pmod{I}$$

de sorte que l'application

$$\bullet \, (\operatorname{mod} I) : \begin{matrix} A & \mapsto & A/I \\ a & \mapsto & a \, (\operatorname{mod} I) = a+I \end{matrix}$$

est un morphisme d'anneaux surjectif de noyau

$$\ker(\bullet \pmod{I}) = I.$$

Exercice 5. Soit A un anneau commutatif non nul et I un ideal. On a vu en cours que si $I \neq A$ est maximal parmi les ideaux stricts de A (si $J \neq A$ est un ideal strict de A tel que $I \subset J$ alors I = J) alors l'anneau quotient A/I est un corps.

- 1. Montrer que reciproquement, si A/I est un corps alors I est maximal. Pour cela on pourra considerer un ideal $J \supset I$ et montrer que si $J \neq I$, il existe $a \in J$ et $b \in A$ tel que $a.b \equiv 1_A \pmod{I}$ (utiliser que A/I est un corps); on en deduira que $1_A \in J$ avant de conclure que J = A.
- 2. Un ideal $I \neq A$ est dit premier si il verifie la condition suivante

$$\forall a, b \in A, \ a.b \in I \Longrightarrow a \in I \text{ ou bien } b \in I.$$

Montrer que

I est premier \iff A/I est un anneau integre.

3. En deduire qu'un ideal maximal est premier (la reciproque n'est pas vraie en general).

Corps

Exercice 6. (\star) Dans cet exercice on va demontrer le resultat suivant :

Lemme. Soit A un anneau non-nul commutatif, integre et FINI alors A est un corps (tout element non-nul de A est inversible).

Soit donc $a \in A - \{0_A\}$ non-nul, on veut montrer que a admet un inverse dans A.

Pour cela on considere la suite d'elements $(a_n)_{n\geqslant 0}$ de A, donnée pour tout entier $n\geqslant 0$ par

$$a_n := a^n = a.a. \cdots .a \ (n \text{ fois})$$

(avec $a_0 = a^0 = 1_A$).

- 1. Montrer qu'il existe deux entiers $0 \le m < n$ tels que $a^n = a^m$.
- 2. En deduire qu'il existe un entier $k \ge 1$ tel que $a^k 1_A = 0_A$ (on factorisera l'egalite $a^n a^m = 0_A$)
- 3. Conclure la preuve du Lemme.
- 4. Soit B un anneau commutatif non nul et $I \neq B$ un ideal strict tel que l'anneau quotient A = B/I soit fini. Montrer que si I est premier alors I est maximal (cf. Ex. 5).

Exercice 7. Soit K et L des corps de caracteristique car(K) et car(L) et

$$\varphi:K\mapsto L$$

un morphisme d'anneaux non nul $(\varphi \neq \underline{0}_L).$ Pour $n \in \mathbb{Z}$ on note

$$n_K := \operatorname{Can}_K(n) = n.1_K \text{ (resp. } n_L := \operatorname{Can}_L(n) = n.1_K)$$

l'image de n par les morphismes canoniques respectifs.

- 1. Montrer que pour tout $n \in \mathbb{Z}$, $\varphi(n_K) = n_L$.
- 2. En deduire que necessairement car(K) = car(L).